Bei der Betrachtung der Tab. III fällt auf, daß die Werte für M ungefähr mit denen der Tab. I übereinstimmen, während die für b größer sind. Dies warnt davor, in der Einführung des Eigenvolums mehr als eine vorläufige Hypothese zu sehen, da man einen umgekehrten Gang erwarten sollte.

 $\label{eq:Tabelle III.} Tabelle III.$ Osmotische Drucke von Kautschuk in Benzol. $t=40^{\circ}.$

Versuch Nr.	e g/l	p in mm Lsg.	b	м
	1 - 81-	1		
ï	4.61	8		between the state of the state
2	4.61 6.01	11	<u> </u>	
3	9.0	24.5)	185000
4	10.49	30	0.05	200 000
5	13.0	56)	180 000

Unsere Viscositäts-Messungen, die wir an den gleichen Lösungen bei denselben Temperaturen gemacht haben, zeigen eine deutliche Abhängigkeit der Zähigkeit von der Fließgeschwindigkeit, auch bei dem Äther-Sol-Kautschuk. Auf diese Anomalien haben wir unsere besondere Aufmerksamkeit gelenkt, und der eine von uns ist zurzeit mit der Aufklärung der hydrodynamischen Vorgänge in solchen Systemen beschäftigt. Danach wird sich wohl entscheiden lassen, ob diese Anomalien nur durch das große Volumen der Teilchen hervorgerufen sind, oder ob noch andere Ursachen dazu beitragen.

Zusammenfassend läßt sich sagen, das die Ergebnisse von Meyer und Mark über die Micellgröße von Kautschuk in benzolischer Lösung in der Größenordnung mit den unserigen übereinstimmen. Der seinerzeit von uns angegebene Wert³) von 30000 war an einem anderen Präparat gewonnen, während die hier mitgeteilten Versuche an einem ähnlichen Material gemacht sind, wie es das war, mit dem die anderen Autoren gearbeitet haben.

Der Notgemeinschaft der Deutschen Wissenschaft gebührt unser Dank, weil nur ihre Unterstützung die Ausführung der Arbeiten ermöglichte; Hrn. Prof. Dr. R. Pummerer haben wir zu danken, weil er uns mit seinem Rat und den Mitteln seines Laboratoriums stets zur Seite stand.

Berichtigung.

Jahrg. **61**, Heft 7, S. 1575, Zeile 14 v. o. u. ff. lies KMnO₄ statt K_2MnO_4 ; vergl. B. **60**, 2497 [1927].

Berichte d. D. Chem. Gesellschaft. Jahrg. LXI.

2443

³⁾ R. Pummerer, Kautschuk 1927, 235.